2018-19 | \{ALLA REDDY ENGINEERING COLLEGE | B.Tech.
Onwards (Autonomous) VI Semester
(MR-18)
Code: 80514 LT |*
SOFTWARE ENGINEERING & UML LAB
Credits: 2 S

Prerequisite: NIL
Course Objectives: To understand the software engineering methodologies involved in

the phases for project development. To gain knowledge about open source tools used for
implementing software engineering methods. To exercise developing product-startups
implementing software engineering methods. Open source Tools: StarUML / UMLGraph
/ Top cased.

Prepare the following documents and develop the software project startup,
prototype model, using software engineering methodology for at least two real time
scenarios or for the sample experiments.

e Problem Analysis and Project Planning -Thorough study of the problem -
Identify Project scope, Objectives and Infrastructure.

e Software Requirement Analysis — Describe the individual Phases/modules of
the project and Identify deliverables. Identify functional and non-functional
requirements.

e Data Modeling — Use work products — data dictionary.

e Software Designing — Develop use case diagrams and activity diagrams, build and
test class diagrams, sequence diagrams and add interface to class diagrams.

e Prototype model — Develop the prototype of the product.

The SRS and prototype model should be submitted for end semester examination.

List of Sample Experiments:

Course management system (CMS)

A course management system (CMS) is a collection of software tools providing an
online environment for course interactions. A CMS typically includes a variety of online
tools and environments, such as:

e An area for faculty posting of class materials such as course syllabus and handouts

e An area for student posting of papers and other assignments

e A grade book where faculty can record grades and each student can view his or
her grades

o An integrated email tool allowing participants to send announcement email
messages to the entire class or to a subset of the entire class

e A chat tool allowing synchronous communication among class participants

e A threaded discussion board allowing asynchronous communication
among participants

188

In addition, a CMS is typically integrated with other databases in the university so
that students enrolled in a particular course are automatically registered in the CMS
as participants in that course.

The Course Management System (CMS) is a web application for department
personnel, Academic Senate, and Registrar staff to view, enter, and manage course
information formerly submitted via paper. Departments can use CMS to create new
course proposals, submit changes for existing courses, and track the progress of proposals
as they move through the stages of online approval.

Easy Leave

This project is aimed at developing a web based Leave Management Tool, which is

of importance to either an organization or a college.

The Easy Leave is an Intranet based application that can be accessed throughout

the organization or a specified group/Dept. This system can be used to automate the
workflow of leave applications and their approvals. The periodic crediting of leave is also
automated. There are features like notifications, cancellation of leave, automatic approval
of leave, report generators etc in this Tool.

Functional components of the project:

There are registered people in the system. Some are approvers. An approver can also be
a requestor. In an organization, the hierarchy could be

Engineers/Managers/Business Managers/Managing Director etc. In a college, it could be
Lecturer/Professor/Head of the Department/Dean/Principal etc.

Following is a list of functionalities of the system: A person should be able to

o login to the system through the first page of the application

o change the password after logging into the system

e see his/her eligibility details (like how many days of leave he/she is eligible for etc)

e query the leave balance

e see his/her leave history since the time he/she joined the company/college

o apply for leave, specifying the from and to dates, reason for taking leave, address
for communication while on leave and his/her superior’s email id

o see his/her current leave applications and the leave applications that are submitted
to him/her for approval or cancellation

o approve/reject the leave applications that are submitted to him/her

o withdraw his/her leave application (which has not been approved yet)

o Cancel his/her leave (which has been already approved). This will need to
be approved by his/her Superior

o get help about the leave system on how to use the different features of the system

e Assoon as a leave application /cancellation request /withdrawal /approval
/rejection /password-change is made by the person, an automatic email should be sent
to the person and his superior giving details about the action

189

e The number of days of leave (as per the assumed leave policy) should
be automatically credited to everybody and a notification regarding the same be sent
to them automatically

e An automatic leave-approval facility for leave applications which are older than
2 weeks should be there. Notification about the automatic leave approval should be
sent to the person as well as his superior

E-Bidding

Auctions are among the latest economic institutions in place. They have been used
since antiquity to sell a wide variety of goods, and their basic form has remained
unchanged. In this dissertation, we explore the efficiency of common auctions when
values are interdependent the value to a particular bidder may depend on information
available only to others-and asymmetric. In this setting, it is well known that sealed-bid
auctions do not achieve efficient allocations in general since they do not allow the
information held by different bidders to be shared.

Typically, in an auction, say of the kind used to sell art, the auctioneer sets a relatively
low initial price. This price is then increased until only one bidder is willing to buy the
object, and the exact manner in which this is done varies. In my model a bidder who
drops out at some price can “reenter” at a higher price. With the invention of E-
commerce technologies over the Internet the opportunity to bid from the comfort of one’s
own home has seen a change like never seen before. Within the span of a few short years,
what may have began as an experimental idea has grown to an immensely popular hobby,
and in some cases, a means of livelihood, the Auction Patrol gathers tremendous response
every day, all day. With the point and click of the mouse, one may bid on an item they
may need or just want, and in moments they find that either they are the top bidder or
someone else wants it more, and you’re outbid! The excitement of an auction all from the
comfort of home is a completely different experience.

Society cannot seem to escape the criminal element in the physical world, and so it is
the same with Auction Patrols. This is one area where in a question can be raised as to
How safe Auction Patrols.

Proposed system

o To generate the quick reports

e To make accuracy and efficient calculations

e To provide proper information briefly

o To provide data security

e To provide huge maintenance of records
Flexibility of transactions can be completed in time

Electronic Cash counter

This project is mainly developed for the Account Division of a Banking sector to
provide better interface of the entire banking transactions. This system is aimed to give a
better out look to the user interfaces and to implement all the banking transactions like:

190

e Supply of Account Information
e New Account Creations

e Deposits

e Withdraws

e Cheque book issues

o Stop payments

o Transfer of accounts

e Report Generations.

Proposed System:

The development of the new system contains the following activities, which try to
automate the entire process keeping in view of the database integration approach.

User friendliness is provided in the application with various controls.The system makes
the overall project management much easier and flexible. Readily upload the latest
updates, allows user to download the alerts by clicking the URL. There is no risk of data
mismanagement at any level while the project development is under process. It provides
high level of security with different level of authentication

Objectives:The student should take up the case studies of ATM system, Online
Reservation System and Model it in different views i.e. Use case view, logical view,
component view, Deployment view.

Week 1
Design a Use case Diagram for ATM system, Online Reservation System

Week 2
Design a Sequence Diagram for ATM system, Online Reservation System. Design a
Collaboration Diagram for ATM system, Online Reservation System.

Week 3
Design a Activity Diagram for ATM system, Online Reservation System.
Design a State Chart Diagram for ATM system, Online Reservation System.

Week 4
Design a Class Diagram for ATM system, Online Reservation System.

Week 5
Design a Component Diagram for ATM system, Online Reservation System.

Week 6

Design a Deployment Diagram for ATM system, Online Reservation System.

Course Outcomes:

Upon completion of this course, students should be able to:

1. Analyze the requirements through Use-Case View

2. Identify all structural and behavioral concepts of the entire system

3. Develop a model using UML concepts by different types of diagrams like Usecase
Diagram, Class Diagram, Sequence Diagram etc

191

CO- PO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs Programme Outcomes(POs) PSOS
PO1 | PO2 | PO3 | PO4 | POS5 | PO6 | PO7 | PO8S | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3
Co1 3 2 2 3 2
CO2 3 2 2 2
CO3 2 3 3 2 2 3

192

1
|
|
|
!
i
|
|

- |

MALLA REDDY ENGINEERING COLLEGE (A)

DEPARTMENTOF
INFORMATION TECHNOLOGY

SOFTWARE ENGINEERING & UML LAB MANUAL

CONTENT

Experiment . Page
No. Name of the Experiment No.
Develop Flow-Charts to understand basic problem
1 solving technique by the help of Raptor tool. 03
Develop requirements specification for a given
2 problem 14
Develop DFD model (level-0, level-1 DFD and Data
3 dictionary) of the project 18
4 Structured design for the developed DFD model 21
5 Develop UML Use case model for a problem 24
6 Develop sequence diagram 29
7 Develop Class diagram 34
2 Develop java programming language code for sample
class diagram 40
9 Use of testing tool such as Junit 60
10 Project management using GanttProject 65
11 Version control using Subversion

69

Experiment No.1

Aim: Develop Flow-Charts to understand basic problem solving technique by the help of
Raptor tool.

Objective: To familiar with visual problem solving using Flow-Charts.
Software Required: Raptor 4.0

Procedure:

Introduction

One of the most important aspects of programming is controlling which statement will execute
next. Control structures /| Control statements enable

a programmer to determine the order in which

program statements are executed. These control Assignment

structures allow you to do two things: 1) skip some Hy Basic
statements while executing others, and 2) repeat one Call Commands

or more statements while some condition is true. _D D—)

RAPTOR programs use six basic types of Tpnee S Dnaa
statements, as shown in the figure to the right. You

Selection
have already learned about the four basic commands Flow of Control
in a previous reading. In this reading you will learn Commands
about the Selection and Loop commands. Loop

Sequential Program Control

All of the RAPTOR programs you have seen in previous readings have used sequential program
control. By sequential we mean "in sequence," one-after-the-other. Sequential logic is the easiest
to construct and follow. Essentially you place each statement in the order that you want them to
be executed and the program executes them in sequence from the Start 7y
statement to the End statement. As you can see by the example program to the Bt :'
right, the arrows linking the statements depict the execution flow. If your \T/
program included 20 basic commands then it would execute those 20 statements
in order and then quit.

Statement 1

1

When you are solving a problem as a programmer, you must determine what | statement2
statements are needed to create a solution to the problem and the order in which
those statements must be executed. Writing the correct statements is one task.
Determining where to place those statements in your program is equally | Statements
important. For example, when you want to get and process data from the user

you have to GET the data before you can use it. Switching the order of these /J-\
statements would produce an invalid program. \

[

Software Engineering Lab Manual Page 3

Sequential control is the "default" control in the sense that every statement automatically points
to the next statement in the flowchart diagram. You do not need to do any extra work to make
sequential control happen. However, using sequential control alone will not allow the
development of solutions for most real-world problems. Most real world problems include
"conditions" that determine what should be done next. For example, "If it is after taps, then turn
your lights out," requires a decision to be made based on the time of day. The "condition" (i.e.,
the current time of day) determines whether the action should be executed or not executed. This
is called "selection control" and is introduced next.

Selection Control s s

It is common that you will need to make a decision about some
condition of your program's data to determine whether certain .
statements should be executed. For example, if you were calculating the slope of a line using the
assignment statement, slope — dy / dx, then you need to make sure that the value of dx 1is
not zero (because division by zero is mathematically undefined and will produce a run-time
error). Therefore, the decision you would need to make is, "Is dx zero?"

A selection-control statement allows you to make "decisions" in your code about the current
state of your program's data and then to take one of two alternative paths to a "next" statement.
The RAPTOR code on the right illustrates a selection- S

. . . -~ -
control statement, which is always drawn as a diamond. (\
All decisions are stated as "yes/no" questions. When a St }
program is executed, if the answer to a decision is "yes" =
(or true), then the left branch of control is taken. If the
answer is "no" (or false), then the right branch of control Statement 1
is taken. In the example to the right, either statement 2a

or statement 2b will be executed, but never both. Note

that there are two possible executions of this example Ve fDecisionH)
program:

Possibility 1 Possibility 2 -

Statement 1 Statement 1

Statement 2a Statement 2b Statement 2a Statement 2b

Statement 3 Statement 3
Also note that either of the two paths of a selection- 1
control statement could be empty or cguld contain Statement 3
several statements. It would be inappropriate for both
paths to be empty or for both paths to have the exact 1

« . ~ e

same statements, because then your decision, Yes or No, 7 il ",
would have no effect during program execution (since 'L End
nothing different would happen based on the decision). o SRS

Decision Expressions

A selection-control statement requires an expression that can be evaluated into a "Yes/No" (or
True/False) value. A decision expression is a combination of values (either constants or

Software Engineering Lab Manual Page 4

variables) and operators. Please carefully study the following rules for constructing valid
decision expressions.

As you hopefully recall from our discussion of assignment statement expressions, a computer
can only perform one operation at a time. When a decision expression is evaluated, the
operations of the expression are not evaluated from left to right in the order that you typed them.
Rather, the operations are performed based on a predefined "order of precedence." The order that
operations are performed can make a radical difference in the final "Yes/No" value that is
computed. You can always explicitly control the order in which operations are performed by
grouping values and operators in parenthesis. Since decision expressions can contain calculations
similar to those found in assignment statements, the following "order of precedence" must
include assignment statement expression operators. The "order of precedence" for evaluating
decision expression is:

compute all functions, then

compute anything in parentheses, then

compute exponentiation (*,**) i.e., raise one number to a power, then

compute multiplications and divisions, left to right, then

compute additions and subtractions, left to right, then

evaluate relational operators (= != /= < <= > >=), left to right,

evaluate any not logical operators, left to right,

evaluate any and logical operators, left to right,

evaluate any xor logical operators, left to right, then finally

10 evaluate any or logical operators, left to right.

00 N LR LN

In the above list, the relational and logical operators are new. These new operators are explained
in the following table.

Operation Description Example
= "is equal to" 3 = 4 is No(false)
1= "is not equal to" 3 !'= 4 is Yes (true)
/= 3 /= 4 is Yes (true)
< "is less than" 3 < 4 is Yes (true)
<= "is less than or equal to" 3 <= 4 is Yes (true)
> "is greater than" 3 > 4 isNo(false)
>= "is greater than or equal to" 3 >= 4 is No(false)
and Yes (true) if both are Yes (3 < 4) and (10 < 20)
is Yes (true)
or Yes (true) if either are Yes (3 < 4) or (10 > 20)
is Yes(true)
xor Yes (true) if the "yes/no" values | Yes xor No
are not equal is Yes (true)
not Invert the logic of the value not (3 < 4)
Yes if No; No if Yes is No (false)
The relational operators, (= != /= < <= > >=) must always compare two values of the
same data type (either numbers, text, or "yes/no" values). For example, 3 = 4 or "Wayne" =
"Sam" are valid comparisons, but 3 = "Mike" is invalid.

Software Engineering Lab Manual

Page 5

The logical operators, (and , or, xor), must always combine two Boolean values (true/false)
into a single Boolean value. The logical operator, not, must always convert a single Boolean
value into its opposite truth value. Several valid and invalid examples of decision expressions are
shown below:

Example Valid or Invalid?

(3<4) and (10<20) Valid

(flaps_angle < 30) and | Valid, assuming flaps angleand air speed

(air speed < 120) both contain numerical data. B

5 and (10<20) Invalid - the left side of the "and" is a number, not
a true/false value.

5 <= x <=7 Invalid - because the 5 <= x is evaluated into a
true/false value and then the evaluation of
true/false <= 7 is an invalid relational
comparison.

Selection Control Examples N L]
To help clarify selection-control / O /
statements, please study the .

following examples. In the first [;[, LN N
example to the right, if a student 4%5\ GPA==30 =
has made the Dean's List, thena | ~ooo o

congratulations message will be
displayed - otherwise nOthing is PUT "Congratulations for
displayed (since the "no" branch is / making the Dean'’s list!™

L J

empty). [1
,,,,, J
Yes GPA >=3.0 %
In the next example, one line of text | N e /
is always displayed, with the value
of the PGA variable determining o o [e . /
. PUT "Congratulations for [PUT "Sorrv. youdid not |
which one. making the Dean's list!™ ,j make the Dean's list.™® |
I ' T J
1)
In the next example, if the student N N
does not make the Dean's list then Yes GPA < 3.0 A
two lines of text are displayed, but NG RRI /

only one line is displayed if they

do. . PUT "Sorry, you did not PUT "Congratulations for
In the last example to the I'lght, the make the Dean's list." making the Dean's list!"$
logic of the decision expression has T T

been inverted. This is perfectly I

Software Engineering Lab Manual Page 6

acceptable as long as you make sure the inversion covers all possible cases. Note that the
inversion of "greater than or equal to" is simply "less than."

Cascading Selection statements

A single selection-control statement can make a choice between one or two choices. If you need
to make a decision that involves more than two choices, you need to have multiple selection
control statements. For example, if you are assigning a letter grade (A, B, C, D, or F) based on a
numeric score, you need to select between five choices, as shown below. This is sometimes
referred to as "cascading selection control," as in water cascading over a series of water falls.

L

"Enter vour grade
percentage”
GET Score

I

/ PUT "Your letter grade is "

Score == 90 No
PUT "A™ Yes Scare == 80 No
s
,-' PUT "I Yes Score > 70
.
f PUT "C™ f
]
T]

Software Engineering Lab Manual Page 7

Loop (Iteration) Control
A Loop (iteration) control statement allows you to repeat one or more

statements until some condition becomes true. This type of control
statement is what makes computers so valuable. A computer can
repeatedly execute the same instructions over-and-over again without
getting bored with the repetition.

A

No

One ellipse and one diamond symbol is used to represent a loop in

RAPTOR. The number of times that the loop is executed is controlled

by the decision expression that is entered into the diamond symbol. During execution, when the
diamond symbol is executed, if the decision expression evaluates to "no," then the "no" branch is
taken, which always leads back to the Loop statement and repetition. The statements to be
repeated can be placed above or below the decision diamond.

To understand exactly how a loop statement works, study
the example RAPTOR program to the right and notice the
follow things about this program:

(©

e Statement 1 is executed exactly once before the
loop (repetition) begins. Statement1

e Statement 2 will always be executed at least once
because it comes before the decision statement.

1

e If the decision expression evaluates to "yes," then
the loop terminates and control is passed to
Statement 4. Statement2

e If the decision expression evaluates to "no," then
control passes to Statement 3 and Statement 3 is
executed next. Then control is returned back up to
the Loop statement which re-starts the loop.

gm

e Note that Statement 2 is guaranteed to execute at Statement3

least once. Also note that Statement 3 is possibly
never executed.

I

Statement4

There are too many possible executions of this example
program to list them all, but a few of the possibilities are
listed in the following table. Make sure you can fill in the
fourth column with the correct pattern.

Software Engineering Lab Manual Page 8

Possibility 1 Possibility 2 Possibility 3 Possibility 4

Statement 1 Statement 1 Statement 1 (do you see the
Statement 2 Statement 2 Statement 2 pattern?)
Decision ("yes") | Decision ("no") Decision ("no")
Statement 4 Statement 3 Statement 3

Statement 2 Statement 2

Decision ("yes") Decision ("no")

Statement 4 Statement 3

Statement 2
Decision ("yes")
Statement 4

In the RAPTOR example above, "Statement2" could be removed, which means that the first
statement in the loop would be the "Decision" statement. Or "Statement2" could be a block of
multiple statements. In either case the loop executes in the same way. Similarly, "Statement3"
could be deleted or be replaced by multiple statements. In addition, any of the statements above
or below the "Decision" statement could be another loop statement! If a loop statement occurs
inside a loop, we called these "nested loops."

It is possible that the "Decision" statement never evaluates to "yes." In such a case you have an
"infinite loop" that will never stop repeating. (If this ever happens, you will have to manually
stop your program by selecting the "stop" icon in the tool bar.) You should never write
statements that create an infinite loop. Therefore, one (or more) of the statements in the loop
must change one or more of the variables in the "Decision" statement such that it will eventually
evaluate to "yes."

Input Validation Loops

One common use for a loop is to validate user input. If you want the user to input data that
meets certain constraints, such as entering a person's age, or entering a number between 1 and
10, then validating the user input will ensure such constraints are met before those values are
used elsewhere in your program. Programs that validate user input and perform other error
checking at run-time are called robust programs.

A common mistake made by beginning programmers is to validate user input using a selection
statement. This can fail to detect bad input data because the user might enter an invalid input on
the second attempt. Therefore, you must use a loop to validate user input.

The two example RAPTOR programs below validate user input. Hopefully you see a pattern.
Almost every validation loop that you write will include an input prompt, a decision, and an
output error message.

Software Engineering Lab Manual Page 9

"Enter an integer between |
"Enter your age" and 10"
GET Lge GETn

=1) md (n < Iﬂ]
Veg Age = 0 and age and f1 noun) =n

cannot possibly be vor

PUT "The wahie yo1 ertered /E’i T "Invahd |npu1 please mL
again™
age!"f

1

Counting Loops

Another common use of a loop is to execute a block of code a
specific number of times. This type of loop is called a counter-
controlled loop because it requires a variable that "counts by
one" on each execution of the loop. Therefore, besides the loop
statement, a counter-controlled loop requires a "counter" variable
that is:

1. initialized before the loop starts,

2. modified inside the loop, and

3. used in the decision expression to stop the loop.
The acronym I.T.E.M (Initialize, Test, Execute, and Modify) can
be used to check whether a loop and its counter variable are
being used correctly.

An example of a count-controlled loop that executes exactly 100
times is shown to the right. As you study this example, please
notice the following important points:
e In this example, the "counter" variable is called "Count."
You can use any variable name, but try to make it
descriptive and meaningful for your current task.

e The "counter" variable must be initialized to its starting
value before the loop begins. It is common to start its
value at one (1), but you could have a loop that executes
100 times by starting at 20 and counting to 119. Try to
use a starting value that is appropriate for the problem
you are solving.

Count + 1

e

Loop

Statements
to be
repeated

Fer,
{ Comt>=100
4 T_ND ,

Count += Count + 1

S EEEEm—

e The decision expression that controls the loop should typically test for "greater than or

equal to." This is a safer test than just "equal to."

Software Engineering Lab Manual

Page 10

e A counter-controlled loop typically increments the counter variable by one on each
execution of the loop. You can increment by a value other than one, but this will
obviously change how many times the loop repeats.

The following three RAPTOR programs demonstrate common errors that should be avoided
when implementing loops. See if you can determine the error in each program. (If you can't find
the errors, they are explained in footnotes at the bottom of the page.) All three of these
problematic programs create an infinite loop — that is, a loop that never stops. To avoid writing
infinite loopf, avoid these common errors. .

Conmnt « 1 e Count « 1
Loop
Count + 1

ol L I
e Count == 100 > Count « Count + 1 Coint e St ¥ 1
: X s

| % Ceount == 100 > i Count = - 100 >
Y ' INO '

L

The following example programs show the six (6) possible variations of a counter-controlled

loop. They all do the same thing -- they execute the statement(s) represented by the empty box

Limit number of times. You can use the variation that makes the most sense to you. In each

example, pay close attention to the starting (initial) value of Count and the Decision expression.
L

"Howr many data vahies will you be
tarine"
Illpllt LOOpS GET Hmzr;_eéj;:g Diata_Vahes
i

Sometimes you need a user to enter a series of values
that you can process. There are two general techniques
to accomplish this. The first method is to have the user

enter a “special” value that signifies that the user is G:

finished entering data. A second method is to ask the

user, in advance, how many values they will be entering.
Then that value can be used to implement a counter- o A /
controlled loop. These two methods are depicted in the ; I
following example programs. In both cases the empty
boxes signify where the entered data would be

Count + 1

Comnt « Count + 1

I

Software Engineering Lab Manual Page 11

processed. Don’t worry about how the data is processed, just look at these examples to see how
the user controls how much data is entered.

"Please enter yourdata Exter
Oto stop”
GET Data
et Data=10 >

Sum « 0

"Running Total" Loops

Another common use of loops is to calculate the sum of a
series of data values, which is sometimes called a "running

total" or a "running sum." The example program to the
right produces a "running total" of a series of values entered
by a user. ”[‘Iczlsg cr1f0|' you dat;}' value. /
Enter 0 1o stop.
GET Value
To create a "running sum" you must add two additional A
statements to a loop: Yes Value — 0 >
¢ An initialization statement, before the loop starts, that R
sets a "running sum" variable to zero (0). T"“’
For example,
Sum « 0 Sum « Sum + Value
e An assignment statement, inside the loop, that adds T
each individual value to the "running sum" variable.

For example, —

Sum — Sum + Value
PUT "The sum is " + Sum?
1

Make sure you understand the assignment statement, Sum
Sum + Value. In English it says, calculate the expression on the right side of the arrow by
taking the current value of Sum and adding Value to it. Then place the result into the variable
Sum.

The variable name, Sum, is not magic. Any variable name could be used, such as Total or
Running Sum.

Software Engineering Lab Manual Page 12

"Counting" Loops

Another common use of loops is for
counting the number of times an event
occurs. An example of this type of
program logic is shown to the right. Note
how similar this program is to the
previous example.

The last two examples demonstrate how
the same pattern of programming
statements occurs over and over again and
can be used to solve a variety of similar
problems. By studying and understanding
the simple examples in this reading you
will be able to use these examples as the
basis for solving additional, more
complex problems.

L

Number positive <« ()

"Please enter you data value.
Enter -999 to stop.”
GET Value

Yes

D

No

Number_positive «
Number positive + 1

L

L

1

|

PUT "You entered " +
Number positive + " positive
values."y

I

Software Engineering Lab Manual

Page 13

Experiment No.2

AIM- Develop requirements specification for a given problem

Objective: To find the requirement specification(both functional and nonfunctional) of a given
Problem.

Procedure:

Step 1:

Introduction:

Purpose

Identify the product whose software requirements are specified in this document, including the
revision or release number. Describe the scope of the product that is covered by this SRS,
particularly if this SRS describes only part of the system or a single subsystem.

Intended Audience and Reading Suggestions

Describe the different types of reader that the document is intended for, such as developers,
project managers, marketing staff, users, testers, and documentation writers. Describe what the
rest of this SRS contains and how it is organized. Suggest a sequence for reading the document,
beginning with the overview sections and proceeding through the sections that are most pertinent
to each reader type.

Project Scope

Provide a short description of the software being specified and its purpose, including relevant
benefits, objectives, and goals. Relate the software to corporate goals or business strategies. If a
separate vision and scope document is available, refer to it rather than duplicating its contents
here. An SRS that specifies the next release of an evolving product should contain its own scope
statement as a subset of the long-term strategic product vision.

Step 2:

Overall Description

Product Perspective

Describe the context and origin of the product being specified in this SRS. For example, state
whether this product is a follow-on member of a product family, a replacement for certain
existing systems, or a new, self-contained product. If the SRS defines a component of a larger
system, relate the requirements of the larger system to the functionality of this software and
identify interfaces between the two. A simple diagram that shows the major components of the
overall system, subsystem interconnections, and external interfaces can be helpful.

Product Features

Summarize the major features the product contains or the significant functions that it performs or
lets the user perform. Only a high level summary is needed here. Organize the functions to make
them understandable to any reader of the SRS. A picture of the major groups of related
requirements and how they relate, such as a top level data flow diagram or a class diagram, is
often effective.

User Classes and Characteristics

Identify the various user classes that you anticipate will use this product. User classes may be
differentiated based on frequency of use, subset of product functions used, technical expertise,
security or privilege levels, educational level, or experience. Describe the pertinent

Software Engineering Lab Manual Page 14

characteristics of each user class. Certain requirements may pertain only to certain user classes.
Distinguish the favored user classes from those who are less important to satisfy.

Operating Environment

Describe the environment in which the software will operate, including the hardware platform,
operating system and versions, and any other software components or applications with

which it must peacefully coexist.

Design and Implementation Constraints

Describe any items or issues that will limit the options available to the developers. These might
include: corporate or regulatory policies; hardware limitations (timing requirements, memory
requirements); interfaces to other applications; specific technologies, tools, and databases to be
used; parallel operations; language requirements; communications protocols; security
considerations; design conventions or programming standards (for example, if the customers
organization will be responsible for maintaining the delivered software).

Step 3:

System Features

This template illustrates organizing the functional requirements for the product by system
features, the major services provided by the product. You may prefer to organize this section by
use case, mode of operation, user class, object class, functional hierarchy, or combinations of
these, whatever makes the most logical sense for your product.

System Feature 1

Don“t really say “System Feature 1.” State the feature name in just a few words.

1 Description and Priority Provide a short description of the feature and indicate whether it is of
High,

Medium, or Low priority. You could also include specific priority component ratings, such as
benefit, penalty, cost, and risk (each rated on a relative scale from a low of 1 to a high of 9).

2 Stimulus/Response Sequences List the sequences of user actions and system responses that
stimulate the behavior defined for this feature. These will correspond to the dialog elements
associated with use cases.

3 Functional Requirements Itemize the detailed functional requirements associated with this
feature. These are the software capabilities that must be present in order for the user to carry out
the services provided by the feature, or to execute the use case. Include how the product should
respond to anticipated error conditions or invalid inputs. Requirements should be concise,
complete, unambiguous, verifiable, and necessary.

<Each requirement should be uniquely identified with a sequence number or a meaningful tag of
some kind.>

REQ-1:

REQ-2:

System Feature 2 (and so on)

Step 4:

External Interface Requirements

User Interfaces

Describe the logical characteristics of each interface between the software product and the users.
This may include sample screen images, any GUI standards or product family style guides that
are to be followed, screen layout constraints, standard buttons and functions (e.g., help) that will
appear on every screen, keyboard shortcuts, error message display standards, and so on. Define

Software Engineering Lab Manual Page 15

the software components for which a user interface is needed. Details of the user interface design
should be documented in a separate user interface specification.

Hardware Interfaces

Describe the logical and physical characteristics of each interface between the software product
and the hardware components of the system. This may include the supported device types, the
nature of the data and control interactions between the software and the hardware, and
communication protocols to be used.

Software Interfaces

Describe the connections between this product and other specific software components (name
and version), including databases, operating systems, tools, libraries, and integrated commercial
components. Identify the data items or messages coming into the system and going out and
describe the purpose of each. Describe the services needed and the nature of communications.
Refer to documents that describe detailed application programming interface protocols. Identify
data that will be shared across software components. If the data sharing mechanism must be
implemented in a specific way (for example, use of a global data area in a multitasking operating
system), specify this as an implementation constraint.

Communications Interfaces

Describe the requirements associated with any communications functions required by this
product, including e-mail, web browser, network server communications protocols, electronic
forms, and so on. Define any pertinent message formatting. Identify any communication
standards that will be used, such as FTP or HTTP. Specify any communication security or
encryption issues, data transfer rates, and synchronization mechanisms.

Nonfunctional Requirements

Performance Requirements

If there are performance requirements for the product under various circumstances, state them
here and explain their rationale, to help the developers understand the intent and make suitable
design choices. Specify the timing relationships for real time systems. Make such requirements
as specific as possible. You may need to state performance requirements for individual
functional requirements or features.

Safety Requirements

Specify those requirements that are concerned with possible loss, damage, or harm that could
result from the use of the product. Define any safeguards or actions that must be taken, as well as
actions that must be prevented. Refer to any external policies or regulations that state safety
issues that affect the product’s design or use. Define any safety certifications that must be
satisfied.

Security Requirements

Specify any requirements regarding security or privacy issues surrounding use of the product or
protection of the data used or created by the product. Define any user identity authentication
requirements. Refer to any external policies or regulations containing security issues that affect
the product. Define any security or privacy certifications that must be satisfied.

Software Quality Attributes

Specify any additional quality characteristics for the product that will be important to either the
customers or the developers. Some to consider are: adaptability, availability, correctness,
flexibility, interoperability, maintainability, portability, reliability, reusability, robustness,
testability, and usability. Write these to be specific, quantitative, and verifiable when possible. At
the least, clarify the relative preferences for various attributes, such as ease of use

over ease of learning.

Software Engineering Lab Manual Page 16

Other Requirements
Define any other requirements not covered elsewhere in the SRS. This might include database

requirements, internationalization requirements, legal requirements, reuse objectives for the
project, and so on. Add any new sections that are pertinent to the project.

Software Engineering Lab Manual Page 17

Experiment No. 3

AIM : Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.
OBJECTIVE: To familiar with DFD models.

DESCRIPTION :
Data analysis attempts to answer four specific questions:

e What processes make up a system?

e What data are used in each process?

e What data are stored?

e What data enter and leave the system?
Data drive business activities and can trigger events (e.g. new sales order data) or be processed to
provide information about the activity. Data flow analysis, as the name suggests, follows the
flow of data through business processes and determines how organisation objectives are
accomplished. In the course of handling transactions and completing tasks, data are input,
processed, stored, retrieved, used, changed and output. Data flow analysis studies the use of data
in each activity and documents the findings in data flow diagrams, graphically showing the
relation between processes and data.

Physical and Logical DFDs

There are two types of data flow diagrams, namely physical data flow diagrams and logical data
flow diagrams and it is important to distinguish clearly between the two:
Physical Data Flow Diagrams
An implementation-dependent view of the current system, showing what tasks are carried out
and how they are performed. Physical characteristics can include:
Names of people
Form and document names or numbers
Names of departments
Master and transaction files

e Equipment and devices used
Logical Data Flow Diagrams
An implementation-independent view of the a system, focusing on the flow of data between
processes without regard for the specific devices, storage locations or people in the system. The
physical characteristics listed above for physical data flow diagrams will not be specified.

Data Flow Diagram (DFD)

The DFD (also known as a bubble chart) is a hierarchical graphical model of a system that shows
the different processing activities or functions that the system performs and the data interchange
among these functions. Each function is considered as a processing station (or process) that
consumes some input data and produces some output data. The system is represented in terms of
the input data to the system, various processing carried out on these data, and the output data

Software Engineering Lab Manual Page 18

generated by the system. A DFD model uses a very limited number of primitive symbols to
represent the functions performed by a system and the data flow among these functions.

(D 3

External Entity Process Output

\

Data Flow Data Store

Importance of DFDs in a good software design

The main reason why the DFD technique is so popular is probably because of the fact that DFD
is a very simple formalism — it is simple to understand and use. Starting with a set of high-level
functions that a system performs, a DFD model hierarchically represents various sub functions.
In fact, any hierarchical model is simple to understand. Human mind is such that it can easily
understand any hierarchical model of a system — because in a hierarchical model, starting with a
very simple and abstract model of a system, different details of the system are slowly introduced
through different hierarchies. The data flow diagramming technique also follows a very simple
set of intuitive concepts and rules. DFD is an elegant modeling technique that turns out to be
useful not only to represent the results of structured analysis of a software problem, but also for
several other applications such as showing the flow of documents or items in an organization.

Balancing a DFD
The data that flow into or out of a bubble must match the data flow at the next level of DFD. This
is known as balancing a DFD. The concept of balancing a DFD has been illustrated in fig. bellow.
In the level 1 of the DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2
flows into the bubble 0.1. In the next level, bubble 0.1 is decomposed. The decomposition is
balanced, as d1 and d3 flow out of the level 2 diagram and d2 flows in.

dz
r"‘_t""
— " L
I.__,-.—..,‘_r___,.-"'f. -I']ﬂ- . " a.1.1 |r
-’:I ;'F._““';_--'h oy ."'-1. e
{ o)\ (2) 4 S
L\ o i L 0.2 \
. o H\""\-\.
“h.“#*__ ..\- \—j __'L__L .,——I "
\ ¢ i !
I'.I 4z piz_) i
I
\ w.ll / hlll-) L__-.l »
di y r— e
~al P b /i 4 o
. Lg e
i L

Software Engineering Lab Manual Page 19

Decomposition

Each bubble in the DFD represents a function performed by the system. The bubbles are
decomposed into sub-functions at the successive levels of the DFD. Decomposition of a bubble
is also known as factoring or exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything between 3 to 7 bubbles. Too few bubbles at any level make that level
superfluous. For example, if a bubble is decomposed to just one bubble or two bubbles, then this
decomposition becomes redundant. Also, too many bubbles, i.e. more than 7 bubbles at any level
of a DFD makes the DFD model hard to understand. Decomposition of a bubble should be
carried on until a level is reached at which the function of the bubble can be described using a
simple algorithm.

Numbering of Bubbles

It is necessary to number the different bubbles occurring in the DFD. These numbers help in
uniquely identifying any bubble in the DFD by its bubble number.The bubble at the context level
is usually assigned the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 are
numbered, 0.1, 0.2, 0.3, etc, etc. When a bubble numbered x is decomposed, its children bubble
are numbered x.1, x.2, x.3, etc. In this numbering scheme, by looking at the number of a bubble
we can unambiguously determine its level, its ancestors, and its successors.

Data dictionary

A data dictionary lists all data items appearing in the DFD model of a system. The data items
listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD
model of a system. A data dictionary lists the purpose of all data items and the definition of all
composite data items in terms of their component data items. For example, a data dictionary
entry may represent that the data grossPay consists of the components regularPay and
overtimePay.

grossPay = regularPay + overtimePay
For the smallest units of data items, the data dictionary lists their name and their type.
Composite data items can be defined in terms of primitive data items using the following
data definition operators:

+: denotes composition of two data items, e.g. a+b represents data a and b.

[5]: represents selection, i.e. any one of the data items listed in the brackets can
occur. For example, [a,b] represents either a occurs or b occurs.

0: the contents inside the bracket represent optional data which may or may not
appear. e.g. a+(b) represents either a occurs or a+b occurs.

{}: represents iterative data definition, e.g. {name}S represents five name data.
{name}* represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a represents b and c.
/* */: Anything appearing within /* and */ is considered as a comment.

Software Engineering Lab Manual Page 20

Experiment No. 4

Aim- Structured design for the developed DFD model.
Objective- To familiar with structure design.

Description-
Well-structured designs improves the maintainability of the system. A structured system is one
that is developed from the top down and modular, that is, broken down into manageable
components. The modules should be designed so that they have minimal effect on other modules
in the system. The connections between modules are limited and the interaction of data is
minimal. Such design objectives are intended to improe system quality while easing maintenance
task. So, Structure design transform the results of structured analysis (i.e., a DFD representation)
into a structure chart.
Purpose of Structure Chart
A Structure Chart is a design tool that visually displays the relationships between program
modeles. It shows which modules with a system interact and also graphically depicts the data
that are communicated between various modules.
Structure charts are developed prior to the writing of program code. They are not intended to
express procedural logic a task left to flowcharts and pseudo code. Nor do they describe the
actual physical interface between processing functions. Instead, they identify the data passes
existing between individual modules that interact with one another.
A structure chart represents the software architecture:

e various modules making up the system

e module dependency (i.e. which module calls which other modules)

e parameters passed among different modules

Basic building blocks of structure chart
1. Rectangular box:

e A rectangular box represents a module.

e annotated with the name of the module it represents.

Process-order

2. Arrows

An arrow between two modules implies: during execution control is passed
from one module to the other in the direction of the arrow.

Software Engineering Lab Manual Page 21

root

v

Process-order Handle-indent Handle-query

Data flow arrows represent: data passing from one module to another in the
direction of the arrow.

Process-order

3. Diamonds

The diamond symbol represents: one module of several modules connected
to the diamond symbol is invoked depending on some condition.

root

Process-order Handle-indent Handle-query

4. Repetition
A loop around control flow arrows denotes: that the concerned modules
are invoked repeatedly.

root

\ 4

Process-order Handle-indent Handle-query

Guidelines for design

Software Engineering Lab Manual Page 22

e There is only one module at the top:

« the root module.
e There is at most one control relationship between any two modules:

+ if module A invokes module B, module B cannot invoke module A.
e The main reason behind this restriction:

« consider modules in a structure chart to be arranged in layers or levels.

Software Engineering Lab Manual Page 23

Experiment No.S

Aim: Develop UML Use case model for a problem.

Objective: To understand the users view of a project using Use case Diagram.

Software Required: Visual Paradigm for UML 8.2 or higher.

Procedure: You can use following steps to draw use case diagrams in VP-UML

Step 1:
Right click Use Case Diagram on Diagram Navigator and select New Use Case Diagram
from the pop-up menu.

(BB 8. R [@ || @sertra |
! Diagram Mavigator Gl X =

g £
OB -B¥-»-
||jjunﬁﬂed
=[5y UML Diagrams

i?ﬁ] Diagranys

'_Lﬂﬂilss Diagram ')
Ejfrequemeﬂiagrai || New Diagram...
... [G icati E._

'l.!..d ummumca_ Iﬂ"_g lﬂ Sort Use Case Diagram by name |
- 4 State Machine Dii ~~
- [] Activity Diagram B Collapse
&.I] Component Diagr! J‘ﬂ\"' it

E;i Deployment Diagér;m-— ul w ~z»-

E] Package Diagram

- [Object Diagram Business Process |
| EIJ Composite Structure L ~
L i ' — Database Modelin
Step 2:

Enter name for the newly created use case diagram in the text field of pop-up box on the top left
corner.

i%;‘j Customer Service
W G é'zp 5 |] Diagram name Customer Service
A

%, Tools =] |

Software Engineering Lab Manual Page 24

Step 3:

Drawing a system

To create a system, select System on the diagram toolbar and then click it on the diagram pane.
Finally, name the newly created system when it is created.

mwzsw e

|3 Toos ks

1" Point Eraser

]i Sweeper

€ Magnet

¢ Gesture Pen
; Eﬂ Use Case & I

@ Use Case

— Association
% Actor
| D System h_

€12 Include |

<E» Extend m—

Step 4:

Drawing an actor

To draw an actor, select Actor on the diagram toolbar and then click it on the diagram pane.
Finally, name the newly created actor when it is created.

_# Gesture Pen
Eﬂ Lse Case =]
@ Use Case

—— Association
Actor

2 Actor E
D System 'J

Step 5:

Drawing a use case

Besides creating a use case through diagram toolbar, you can also create it through resource icon.
Move the mouse over a shape and press a resource icon that can create use case. Drag it and then
release the mouse button until it reaches to your preferred place. The source shape and the newly
created use case are connected. Finally, name the newly created use case.

Software Engineering Lab Manual Page 25

Ige B | @

. - rl/;: - lk:._h:;l
i we el ase AR
b Paellsecase| b~

ssociation -»> Use Casel O S
A |_ﬁ F"-\-...___.___,_,-r"l'il __Eﬂ
i u | B
L™
Actor Actor
Step 6:-

Create a use case through resource icon

Line wrapping use case name

If a use case is too wide, for a better outlook, you may resize it by dragging the filled selectors.
As aresult, the name of use case will be line-wrapped automatically.

Inspedion Manage

Reviewand touch up
Inspedion Report

Step 7:

Resize a use case

To create an extend relationship, move the mouse over a use case and press its resource icon
Extend -> Use Case. Drag it to your preferred place and then release the mouse button. The use
case with extension points and a newly created use case are connected. After you name the
newly created use case, a pop-up dialog box will ask whether you want the extension point to
follow the name of use case. Click Yes if you want it to do so; click NO if you want to enter
another name for extension point.

take physical examination

=BT = M| D
. # K / o L V——_T_—"_‘h.\\
* . pay tuition fea - R

(+1 ’ R release a COE
pay tuition fea Extension Poinls
Geta COE

"“"-—-_._________._.-:E’I:"bl

Step 8:

Create an extend relationship

Drawing <<Include>> relationship

To create an include relationship, mouse over a use case and press its resource icon Include ->
Use Case. Drag it to your preferred place and then release the mouse button. A new use case
together with an include relationship is created. Finally, name the newly created use case.

Software Engineering Lab Manual Page 26

Step 9:
Create a package
Drag the mouse to create a package surrounding those use cases.

Step 10:
Surround use cases with package
Finally, name the package.

Software Engineering Lab Manual Page 27

Step 11:

Name the package

Assigning IDs to actors/Use cases

You may assign IDs to actors and use cases. By default, IDs are assigned with the order of object
creation, starting from one onwards. However, you can define the format or even enter an ID
manually.

Defining the format of ID

To define the format of ID, select Tools > Options from the main menu to unfold the Options
dialog box. Select Diagramming from the list on the left hand side and select the Use Case
Diagram tab on the right hand side. You can adjust the format of IDs under Use Case Diagram
tab. The format of ID consists of prefix, number of digits and suffix.

A O phices g
T =
] Diagramming
Cerem . : . :
dpesane | Erveronment | Fodd Genesion | Shepe | Comector | Bescorrefente | Cless

T4 [Buiresss Prscess Requieren|Gagmm | OFD. | Comwuricaion Dagran
Tretant Ravanaa u::.'lw.[lrbir | vty orei Gimte. L oo | Devivement Giamam
neM | Apsooiagan | Genersimadan EHI: BOAM Irieactan Use Case Thagram
it Coche B !

[iffce Exchange [} Shesw Ligw Cank Extarion Poinfs

L Fah)

N Shioaw Lise Case [D

File Tpen Rerame Exiensor Fomt in Pollos Exisnd Les Cace

Code Syrchroniziion Yes - PNe i Promat

I 4 Ot Sk oo bor

Sped] Cheching sty [T Corerator Format

fem Predi: s o chgiEs | St |

-| [Phetixsd =]] 5
e Case [T Gensrs b Frormst
Pref : Wum of gyt ; e o .
= | Pt Ead - -

Software Engineering Lab Manual Page 28

Experiment No.6

AIM-Develop sequence diagram

Objective ¢+ To understand the interactions between objects that are represented as lifelines
in a sequential order of a project using Sequence Diagram.

Software Required ..
Visual Paradigm for UML 8.2 or higher.

Procedure :-
A sequence diagram is used primarily to show the interactions between objects that are
represented as lifelines in a sequential order.
Step 1:-
Right click Sequence diagram on Diagram Navigator and select New Sequence Diagram
from the pop-up menu to create a sequence diagram.
A BB R || G sertrar
Diagram Navigator g B X g
IOE-B#-a- |
; ﬂ:unﬁtled
|| E1-{-5UML Diagrams | ' _ M
-[{] Use Case Diagram | |
Eﬂ] Class Diagram
:_J;'.-EJ equence Diagrame=
E:d Communication DE'EJ_
Eﬂ State Machine Diaﬁ: |_| Mew Diagram...
| &) Activity Diagram | pa
m Component Diag,ra?— —
L_‘ia] Deployment Diagrz Ejﬂr\ Collapse

! A} il | 5'133\“ Expand

Mew Sequence Diagram I}

Sort Sequence Diagram by name

Step 2:-

Enter name for the newly created sequence diagram in the text field of pop-up box on the top left
corner.

Creating actor

To create actor, click Actor on the diagram toolbar and then click on the diagram.

7] Frame
E Actaor |A\t‘

1 Concurrent
v

Software Engineering Lab Manual Page 29

Creating lifeline
To create lifeline, you can click LifeLine on the diagram toolbar and then click on the diagram.

% Q
Inspedor
i)

&

jlrfbef.me - LifeLine |
.

Alternatively, a much quicker and more efficient way is to use the resource-centric interface.
Click on the Message -> LifeLine resource beside an actor/lifeline and drag.

Step 3:-
Move the mouse to empty space of the diagram and then release the mouse button. A new
lifeline will be created and connected to the actor/lifeline with a message.

%

Inspedor 1
= % =
I

|
|
|
|
. L

Auto extending activation
When create message between lifelines/actors, activation will be automatically extended.

% IMS % IMS
. T : I
Inspector 1: select one ofthe selected case | Inspector 1: select one ofthe selected case %
|
|
|
|
|
|
|

P

Step 4:-

Using sweeper and magnet to manage sequence diagram

Sweeper helps you to move shapes aside to make room for new shapes or connectors. To use
sweeper, click Sweeper on the diagram toolbar (under the Tools category).

Software Engineering Lab Manual Page 30

s e B |
lll_,i.\ w
d i : rapetor hsdstad - : i 'rr_.[rnn'r_l.mllrhﬂr!'
—» g e
at= I—|>
—P» —>
: | ||-4irn'-!n: climnt informaglion U A review ot chavfin o makion
|
1 '«
i np srul frme d ety vaighm=
g In
| 1
) g ! i
Step 5:-

You can also use magnet to pull shapes together. To use magnet, click Magnet on the
diagram toolbar (under the Tools category).

]! Swespar
€ magre [

A Gestue= Pen

Step 6:-

Creating combined fragment for messages

To create combined fragment to cover messages, select the messages, right-click on the selection
and select Create Combined Fragment, and then select a combined fragment type (e.g. loop)
from the popup menu.

Software Engineering Lab Manual Page 31

IMs

Inspetmrt select one ofthe selected case : :ns.p-edullﬁssistm
Z spedfy nspedion date

a Open Specification... Enter
Sterectypes b
Model Element Properties »
Type (Unspecified) 3

] Create Combined Fragment 3 alt

Bk assert

A Cut break
Copy . consider
Delete r |

= Duplicate... ignore
Change From/To Shape... loop b
Reverse Connector neg
Swap with Message Above (1: select one of the selected case) Ctrl+Up opt
Scroll to LifeLine B
Reset Caption Pesition sert'{
stnct

Step 7:- ‘

A combined fragment of selected type will be created to cover the messages.

% B

Inspedor I
I
| +]
lo '
up’,l 1: select one ofthe selected case I
|
2. specdfy inspedion date
" T
Step 8:-

Adding/removing covered lifelines
After you've created a combined fragment on the messages, you can add or remove the covered
lifelines.
1. Move the mouse over the combined fragment and select Add/Remove Covered
Lifeline... from the pop-up menu.

Software Engineering Lab Manual Page 32

- H-r

E Qpen Specfication. . Enter
Slereoly pes ¥
Operatar Kind 0
Adel/Remove Covered Lifelines.. [y
perand k

2. Inthe Add/Remove Covered Lifelines dialog box, check the lifeline(s) you want to
cover or uncheck the lifeline(s) you don't want to cover. Click OK button.

IE_,I Add/Remove Coversd Lifelnes u

[#] trepector
[ME

Lot J[Mere | Lok [[Gomcei |[nep |

"y

3. Asaresult, the area of covered lifelines is extended or narrowed down according to your
selection.

|nespeirrien | Ines penctor Assbstant
. i .

| alt)

1: Sabact ans of [he sslachad cabe

2 Bty ins pachicn daie

-

Software Engineering Lab Manual Page 33

Experiment No. 7

AIM- Develop Class diagram

Objective:- To show diagrammatically the objects required and the relationships between

them while developing a software product.

Software Required :- Visual Paradigm for UML 8.2 or higher

Procedure :-
Step 1:-

Right click Class Diagram on Diagram Navigator and select New Class Diagram from the pop-

up menu to create a class dlagram

 Diagram Navigator g B o ;-:n_g

| ? ¥ "
!ﬂjunttled |
=-{Z55UML Diagrams |E |
"MU‘SECHSE Diagram B |

T ———
& 5equenoe Dlag il New Class Dlagram h:

IH..J Cummumcatkz |_| Mew Diagram...

I-:"l ik I'-Iachma i Sort Class Diagram by name
Lﬁ.l Activity Dlag,r;—

I) = i E_iﬂ Collapse

a4 |f:"J'ID|‘|T_i\‘ré Expand
Step 2:-

Creating class

To create class, click Class on the diagram toolbar and then click on the diagram.

_I‘E_jj Class =]
l -
E 55 m
44— Generalization =
Step 3:-

To edit multiplicity of an association end, right-click near the association end, select

Multiplicityfrom the popup menu and then select a multiplicity.

Software Engineering Lab Manual

Page 34

o
. B Open Specification... Enter

Sterectypes r

Role B (Reservation)
Mavigable 4
Multiplicity » || v Unspecified
Visibility J 0
Aggregation Kind] 0.1
Edit Role Name... 0.”
Qualifier... 1

Edit 1."

A4 Cut . [:&
Copy ¥ Other...

Step 4:-
The direction arrow is shown beside the association.

:| 1-"|1IJII1131 I:
| L

Creating generalization
To create generalization from class, click the Generalization -> Class resource beside it and
drag.

RE
E
Agl (AR
Reas vat on
- GeEnetalzation - > Class
A] T

Drag to empty space of the diagram to create a new class, or drag to an existing class to connect
to it.
Release the mouse button to create the generalization.

P

;.’f
q

Creating attribute

Software Engineering Lab Manual Page 35

To create attribute, right click the class and select Add > Attribute from the pop-up menu.
I L]

Ll .

Add L Attrate [t AR-Shil=-A

-

y B Open Speification. Enbel EH ikt willy Getler and Sebbei

Herectypes ’ Opevation AR=Shat-0)
- B Madd Element Froperhes ¥ C b or

Sub :F"q'-q““ L I erislele @ sdaroeter

Creafe Parens ¥

An attribute is created.

_ | 1 i
Perfommance
At |
]
w]

Creating attribute with enter key

After creating an attribute, press the Enter key, another attribute will be created. This method lets
you

create multiple attributes quickly and easily.

| 12
Performance r

J-I|:| x Eri?

Creating operation
To create operation, right click the class and select Add > Operation from the pop-up menu.

| ' -
Porfomance |
i Sring | Add | Attribute Ale+ Shifes A
m Rt Dane | =
LEnd . Date B Open Specification... Emter Attribute with Getar and Seter
~Times: : Hours Stereotypes k T peration [:f Alt+ Shife D |
T m P odel Element Propartiec k '!.Z;n_sl:l-'\j-:.mr . :
Suly Diagrams r Template Parameter
Create Parent J

Software Engineering Lab Manual Page 36

An operation is created.
| 12
Performance
id Sinng
ot - Dee
rd : Dma =
Tk © Houls

==

Similar to creating attribute, you can press the Enter key to create multiple operations
continuously.

Drag-and-Drop reordering, copying and moving of class members

To reorder a class member, select it and drag within the compartment, you will see a thick black
line

appears indicating where the class member will be placed.

GetTimes] Houms|] |
o ilmtesi) Daief|
L |

Release the mouse button, the class member will be reordered.

b

d-ﬂ meag Hﬂl.lﬂ'
LB Tick=lmh | Integer

+GaiTimaa): Hawus (]
+Zeibates(): Date [
W

.

To copy a class member, select it and drag to the target class while keep pressing the Ctrl key,
you will

see a thick black line appears indicating where the class member will be placed. A plus sign is
shown

beside the mouse cursor indicating this is a copy action.

Release the mouse button, the class member will be copied.

Software Engineering Lab Manual Page 37

| m |
e | One Time

L akeiD I:r[:?.T Haui Petiad: Datef]
- : | |

To move a class member, select it and drag to the target class, you will see a thick black line
appears

indicating where the class member will be placed. Unlike copy, do not press the Ctrl key when
drag, the

mouse cursor without the plus sign indicates this is a move action.
| B - sl
Sen monal
-.mm:n-[@::, T Hour}

Release the mouse button, the class member will be moved.

e =
% el ﬂ D Time=
Period DEG” wHiekeiD cDale, T Hour s
;Mﬁqn-hh:,r Hour
|| |

Model name completion for class

The model name completion feature enables quick creation of multiple views for the same class
model.

When create or rename class, the list of classes is shown.

[|
| Clas=
.l

o B Class i
(Bl cuztomar

| B ore_Time

| B rerformanca

B resarvation
| B sezsena
| Thaatre

Type text to filter classes in the list.

Software Engineering Lab Manual Page 38

Press up or down key to select class in the list, press Enter to confirm. Upon selecting an existing

class,

all class members and relationships are shown immediately.

ST i ’ Feay

-Hame: Siing P hoce [GREcE
-Phpne : Slrirg

+&ddnane, phone) .

Malda
||
G e T

<MName : Sting
w_Phong ; Siing |

+éddinane, phone)

'—'_&_I

Software Engineering Lab Manual

Page 39

Experiment No. 8

Aim- Develop java programming language code for sample class diagram.
Objective- To familiar with java coding conventions.
Descirption:

Coding conventions are a set of guidelines for a specific programming language that
recommend programming style, practices and methods for each aspect of a piece program
written in this language. These conventions usually cover file
rganization, indentation, comments, declarations, statements, white space, naming
conventions, programming practices, programming principles, programming rules of thumb,
architectural best practices, etc. These are guidelines for software structural quality. Software
programmers are highly recommended to follow these guidelines to help improve
the readability of their source code and make software maintenance easier. Coding conventions
are only applicable to the human maintainers and peer reviewers of a software project.
Conventions may be formalized in a documented set of rules that an entire team or company
follows, or may be as informal as the habitual coding practices of an individual. Coding
conventions are not enforced by compilers. As a result, not following some or all of the rules has
no impact on the executable programs created from the source code.

1. Naming Convention

Use full English descriptors that accurately describe the variable/field/class/interface
For example, use names like firstName, grandTotal, or CorporateCustomer.

Use terminology applicable to the domain
If the users of the system refer to their clients as Customer, then use the term Customer for the
class, not client.

Use mixed case to make names readable

Use abbreviations sparingly, but if you do so then use then intelligently and document it
For example, to use a short form for the word “number”, choose one of nbr, no or num.

Avoid long names (<15 characters is a good tradeoff)
Avoid names that are similar or differ only in case
2. Documentation

Comments should add to the clarity of code.

Software Engineering Lab Manual Page 40

Avoid decoration, i.e., do not use banner-like comments
Document why something is being done, not just what.

Java Comments

Comment Type

Usage

Example

Documentation

Starts with /** and ends

Used before declarations of
interfaces, classes, member
functions, and fields to

/**

* Customer — a person or
* organization

with */ document them. */
C style Used to document out lines | /*
of code that are no longer | This code was commented
Starts with /* and ends with | applicable. It is helpful in | out by Ashish Sarin
*/ debugging. */

Single line

Starts with // and go until
the end of the line

Used internally within
member functions to
document business logic,
sections of code, and
declarations of temporary
variables.

/' If the amount is greater
// than 10 multiply by 100

3. Standards For Member Functions

3. I Naming member functions

Member functions should be named using a full English description, using mixed case with the
first letter of any non-initial word capitalized. The first word of the member function should be a

verb.

Examples
openAccount()
printMailingList()
save()

delete()

This results in member functions whose purpose can be determined just by looking at its name.

Naming Accessor Member Functions

Getters: member functions that return the value of a field / attribute / property of an

object.

Use prefix “get” to the name of the field / attribute / property if the field in not boolean
Use prefix “is” to the name of the field / attribute / property if the field is Boolean
A viable alternative is to use the prefix ‘has’ or ‘can’ instead of ‘is’ for boolean getters.

Examples

Software Engineering Lab Manual

Page 41

getFirstName()
isPersistent()

Setters: member functions that modify the values of a field.
Use prefix ‘set’ to the name of the field.

Examples
setFirstName()

Constructors: member functions that perform any necessary initialization when an object
is created. Constructors are always given the same name as their class.

Examples
Customer()
SavingsAccount()

Member Function Visibility

A good design requires minimum coupling between the classes. The general rule is to be as
restrictive as possible when setting the visibility of a member function. If member function
doesn’t have to be public then make it protected, and if it doesn’t have to be protected than make
it private.

Documenting Member Functions
Member Function Header

Member function documentation should include the following:
e What and why the member function does what it does
What member function must be passed as parameters
What a member function returns
Known bugs
Any exception that a member function throws
Visibility decisions (if questionable by other developers)
How a member function changes the object — it is to helps a developer to understand how
a member function invocation will affect the target object.
Include a history of any code changes
Examples of how to invoke the member function if appropriate.
Applicable pre conditions and post conditions under which the function will work
properly. These are the assumptions made during writing of the function.
e All concurrency issues should be addressed.
Explanation of why keeping a function synchronized must be documented.
When a member function updates a field/attribute/property, of a class that implements
the Runnable interface, is not synchronized then it should be documented why it is
unsynchronized.

Software Engineering Lab Manual Page 42

e If a member function is overloaded or overridden or synchronization changed, it should
also be documented.

Note: It’s not necessary to document all the factors described above for each and every member
function because not all factors are applicable to every member function.

Internal Documentation: Comments within the member functionsUse

C style comments to document out lines of unneeded code.
Use single-line comments for business logic.

Internally following should be documented:

Control Structures This includes comparison statements and loops

Why, as well as what, the code does

Local variables

Difficult or complex code

The processing order If there are statements in the code that must be executed in a defined
order

Document the closing braces If there are many control structures one inside another
4.0 Techniques for Writing Clean Code:
Document the code Already discussed above

Paragraph/Indent the code: Any code between the { and } should be properly indented
Paragraph and punctuate multi-line statements

Example

Line 1 BankAccount newPersonalAccount = AccountFactory
Line 2 createBankA ccountFor(currentCustomer, startDate,
Line 3 initialDeposit, branch)

Lines 2 & 3 have been indented by one unit (horizontal tab)
Use white space
A few blank lines or spaces can help make the code more readable.

Single blank lines to separate logical groups of code, such as control structures
Two blank lines to separate member function definitions

Specify the order of Operations: Use extra parenthesis to increase the readability of the code
using AND and OR comparisons. This facilitates in identifying the exact order of operations in
the code

Write short, single command lines Code should do one operation per line So only one
statement should be there per line

Software Engineering Lab Manual Page 43

Standards for Fields (Attributes / Properties)
Naming Fields

Use a Full English Descriptor for Field Names
Fields that are collections, such as arrays or vectors, should be given names that are plural to
indicate that they represent multiple values.

Examples
firstName
orderltems

If the name of the field begins with an acronym then the acronym should be completely in lower
case

Example
sqlDatabase

Naming Components

Use full English descriptor postfixed by the widget type. This makes it easy for a developer to
identify the purpose of the components as well as its type.

Example

okButton
customerList
fileMenu
newFileMenultem

Naming Constants

In Java, constants, values that do not change, are typically implemented as static final fields of
classes. The convention is to use full English words, all in upper case, with underscores between
the words

Example
MINIMUM_BALANCE
MAX VALUE

DEFAULT START DATE*

Field Visibility

Software Engineering Lab Manual Page 44

Fields should not be declared public for reasons of encapsulation. All fields should be declared
private and accessor methods should be used to access / modify the field value. This results in
less coupling between classes as the protected / public / package access of field can result in
direct access of the field from other classes

Documenting a Field
Document the following:

It’s description

Document all applicable invariants Invariants of a field are the conditions that are always true
about it. By documenting the restrictions on the values of a field one can understand important
business rules, making it easier to understand how the code works / how the code is supposed to
work

Examples For fields that have complex business rules associated with them one should provide
several example values so as to make them easier to understand

Concurrency issues

Visibility decisions If a field is declared anything but private then it should be documented why
it has not been declared private.

Usage of Accesors Accessors can be used for more than just getting and setting the values of
instance fields. Accesors should be used for following purpose also:

Initialize the values of fields Use lazy initialization where fields are initialized by their getter
member functions.

Example
/**

* Answer the branch number, which is the leftmost four digits of the full account
* number. Account numbers are in the format BBBBAAAAAA.

*/
protected int getBranchNumber()
{
if(branchNumber == 0)
h number is 1000, which is the
owntown Bedrock
setBranchNumber(1000);
}
return branchNumber;
}

Software Engineering Lab Manual Page 45

Note:

This approach is advantageous for objects that have fields that aren’t regularly accessed
Whenever lazy initialization is used in a getter function the programmer should document what
is the type of default value, what the default value as in the example above.

Access constant values Commonly constant values are declared as static final fields.
This approach makes sense for “constants” that are stable.

If the constants can change because of some changes in the business rules as the business
matures then it is better to use getter member functions for constants.

By using accesors for constants programmer can decrease the chance of bugs and at the same
time increase the maintainability of the system.

Access Collections The main purpose of accesors is to encapsulate the access to
fields so asto reduce the coupling within the code. Collections, such as arrays and
vectors, being more complex than single value fields have more than just standard getter
and setter member function implemented for them. Because the business rule may require
to add and remove to and from collections, accessor member functions need to be
included to do so.

Example
Member function type Naming Convention Example
Getter for the collection getCollection() getOrderltems()
Setter for the collection setCollection() setOrderltems()
Insert an object into the | insertObject() insertOrderltems()
collection
Delete an object from the | deleteObject() deleteOrderltems()
collection
Create and add a new object | newObject() newOrderltem()
into the collection

Note

The advantage of this approach is that the collection is fully encapsulated, allowing programmer
to later replace it with another structure

It is common to that the getter member functions be public and the setter be protected

Always Initialize Static Fields because one can’t assume that instances of a class will be created
before a static field is accessed

Standards for Local Variables

Naming Local Variables
Use full English descriptors with the first letter of any non-initial word in uppercase.

Naming Streams
When there is a single input and/or output stream being opened, used, and then closed within a
member function the convention is to use in and out for the names of these streams, respectively.

Software Engineering Lab Manual Page 46

Naming Loop Counters
A common way is to use words like loopCounters or simply counter because it helps facilitate
the search for the counters in the program.
i, j, k can also be used as loop counters but the disadvantage is that search for i ,j and k in the
code will result in many hits.

Naming Exception Objects
The use of letter e for a generic exception

Declaring and Documenting Local Variables

Declare one local variable per line of code

Document local variable with an endline comment

Declare local variables immediately before their use

Use local variable for one operation only. Whenever a local variable is used for more than one
reason, it effectively decreases its cohesion, making it difficult to understand. It also increases
the chances of introducing bugs into the code from unexpected side effects of previous values of
a local variable from earlier in the code.

Note
Reusing local variables is more efficient because less memory needs to be allocated, but reusing
local variables decreases the maintainability of code and makes it more fragile

Standards for Parameters (Arguments) to Member Functions

Naming Parameters
Parameters should be named following the exact same conventions as for local variable

Name parameters the same as their corresponding fields (if any)

Example

If Account has an attribute called balance and you needed to pass a parameter representing a
new value for it the parameter would be called balance The field would be referred to as
this.balance in the code and the parameter would be referred as balance

Documenting Parameters

Parameters to a member function are documented in the header documentation for the member
function using the javadoc @param tag. It should describe:

What it should be used for

Any restrictions or preconditions

Examples If it is not completely obvious what a parameter should be, then it should provide one
or more examples in the documentation

Note

Use interface as a parameter to the member function then the object itself.

Software Engineering Lab Manual Page 47

Standards for Classes
Class Visibility

Use package visibility for classes internal to a component
Use public visibility for the fagade of components

Naming classes
Use full English descriptor starting with the first letter capitalized using mixed case for the rest
of the name

Documenting a Class
The purpose of the class
Known bugs
The development/maintenance history of the class
Document applicable variants
The concurrency strategy Any class that implements the interface Runnable should
have its concurrency strategy fully described

Ordering Member Functions and Fields
The order should be:
Constructors
private fields
public member functions
protected member functions
private member functions
finalize()

Standards for Interfaces

Naming Interfaces
Name interfaces using mixed case with the first letter of each word capitalized.
Prefix the letter “I”” or “Ifc” to the interface name

Documenting Interfaces
The Purpose
How it should and shouldn’t be used

Standards for Packages

Local packages names begin with an identifier that is not all upper case
Global package names begin with the reversed Internet domain name for the organization
Package names should be singular

Documenting a Package
The rationale for the package

The classes in the packages

Standards for Compilation Unit (Source code file)

Software Engineering Lab Manual Page 48

Naming a Compilation Unit
A compilation unit should be given the name of the primary class or interface that is declared
within it. Use the same name of the class for the file name, using the same case.

Beginning Comments

/**

* Classname
%

* Version information
%

* Date
%

* Copyright notice
*/

Declaration

Class/interface documentation comment

(/%% %)

See Documentation standard for class /
interfaces

Class or interface statement

Class/interface implementation comment

This comment should contain any class-

wide or interface-wide information that
wasn't appropriate for the class/interface
documentation comment.

(/*...*/), if necessary

Class (static) variables First the public class variables, then the
protected, then package level (no access

modifier), and then the private.

Instance variables First public, then protected, then package

level (no access modifier), and then private.

Methods These methods should be grouped by
functionality rather than by scope or
accessibility. For example, a private class
method can be in between two public
instance methods. The goal is to make

reading and understanding the code easier.

Indentation
Four spaces should be used as the unit of indentation. The exact construction of the indentation
(spaces vs. tabs) is unspecified. Tabs must be set exactly every 8 spaces (not 4).

Line Length
Avoid lines longer than 80 characters, since they're not handled well by many terminals and
tools.

Software Engineering Lab Manual Page 49

Note: Examples for use in documentation should have a shorter line length-generally no more
than 70 characters.

Wrapping Lines
When an expression will not fit on a single line, break it according to these general principles:

Break after a comma.

Break before an operator.

Prefer higher-level breaks to lower-level breaks.

Align the new line with the beginning of the expression at the same level on the previous line.

If the above rules lead to confusing code or to code that's squished up against the right margin,
just indent 8 spaces instead.

Here are some examples of breaking method calls:
someMethod(longExpressionl, longExpression2, longExpression3,
longExpression4, longExpression5);
var = someMethod1(longExpression|,
someMethod?2 (longExpression2,
longExpression3));

Following are two examples of breaking an arithmetic expression. The first is preferred, since the
break occurs outside the parenthesized expression, which is at a higher level.
longNamel = longName2 * (longName3 + longName4 - longName5)

+ 4 * longname6; // PREFER

longNamel = longName2 * (longName3 + longName4
- longName5) + 4 * longname6; // AVOID

Following are two examples of indenting method declarations. The first is the conventional case.
The second would shift the second and third lines to the far right if it used conventional
indentation, so instead it indents only 8 spaces.
//ICONVENTIONAL INDENTATION
someMethod(int anArg, Object anotherArg, String yetAnotherArg,

Object andStillAnother) {

}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS
private static synchronized horkingLongMethodName(int anArg,

Object anotherArg, String yetAnotherArg,
Object andStillAnother) {

}

Line wrapping for if statements should generally use the 8-space rule, since conventional (4
space) indentation makes seeing the body difficult. For example:

//DON'T USE THIS INDENTATION

Software Engineering Lab Manual Page 50

if ((condition] && condition2)
|| (condition3 && condition4)
||'(condition5 && condition6)) { /BAD WRAPS
doSomethingAboutlt(); //MAKE THIS LINE EASY TO MISS

}

//USE THIS INDENTATION INSTEAD
if ((condition] && condition2)
|| (condition3 && condition4)
||'(condition5 && condition6)) {
doSomethingAboutlt();

}

//OR USE THIS
if ((conditionl && condition2) || (condition3 && condition4)
||'(condition5 && condition6)) {
doSomethingAboutlt();

}

Here are three acceptable ways to format ternary expressions:
alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta
: gamma;

alpha = (aLongBooleanExpression)

? beta
: gamma,;

Declaration
One declaration per line is recommended since it encourages commenting. In other words,

int level; // indentation level
int size; // size of table

is preferred over

int level, size;

Do not put different types on the same line. Example:
int foo, fooarray[]; /WRONG!

Note: The examples above use one space between the type and the identifier. Another acceptable
alternative is to use tabs, e.g.:

Software Engineering Lab Manual Page 51

int level; // indentation level
int size; // size of table
Object currentEntry; // currently selected table entry

Initialization

Try to initialize local variables where they're declared. The only reason not to initialize a variable
where it's declared is if the initial value depends on some computation occurring first.

Placement

Put declarations only at the beginning of blocks. (A block is any code surrounded by curly braces
"{" and "}".) Don't wait to declare variables until their first use; it can confuse the unwary
programmer and hamper code portability within the scope.

void myMethod() {
int intl = 0; // beginning of method block

if (condition) {
intint2 =0; // beginning of "if" block

-
}

The one exception to the rule is indexes of for loops, which in Java can be declared in the for
statement:

for (int 1 = 0; 1 < maxLoops; i++) { ... }

Avoid local declarations that hide declarations at higher levels. For example, do not declare the
same variable name in an inner block:

int count;
myMethod() {

if (condition) {
int count=0; // AVOID!

Class and Interface Declarations
When coding Java classes and interfaces, the following formatting rules should be followed:

No space between a method name and the parenthesis "(" starting its parameter list
Open brace "{" appears at the end of the same line as the declaration statement

Software Engineering Lab Manual Page 52

Closing brace "}" starts a line by itself indented to match its corresponding opening statement,
except when it is a null statement the "}" should appear immediately after the " {"
class Sample extends Object {

int ivarl;

int ivar2;

Sample(int i, int j) {

ivarl =1i;
ivar2 = j;
}

int emptyMethod() {}

}

A blank line separates methods
Statements

Simple Statements
Each line should contain at most one statement.

Example:

argv++; /I Correct
argc--; // Correct
argv++; argc--; // AVOID!

Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces "{
statements }". See the following sections for examples.

The enclosed statements should be indented one more level than the compound statement.

The opening brace should be at the end of the line that begins the compound statement; the
closing brace should begin a line and be indented to the beginning of the compound statement.

Braces are used around all statements, even single statements, when they are part of a control
structure, such as a if-else or for statement. This makes it easier to add statements without
accidentally introducing bugs due to forgetting to add braces.

return Statements

A return statement with a value should not use parentheses unless they make the return value
more obvious in some way.

Example:

Software Engineering Lab Manual Page 53

return;
return myDisk.size();
return (size ? size : defaultSize);

if, if-else, if else-if else Statements

The if-else class of statements should have the following form:
if (condition) {
statements;

}

if (condition) {
statements;

} else {
statements;

}

if (condition) {
Statements,

} else if (condition) {
Statements,

} else {
Statements,

}

Note: if statements always use braces {}. Avoid the following error-prone form:
if (condition) //AVOID! THIS OMITS THE BRACES {}!
Statement,
for Statements
A for statement should have the following form:
for (initialization; condition; update) {

Statements,

}

An empty for statement (one in which all the work is done in the initialization, condition, and
update clauses) should have the following form:

for (initialization; condition; update);
When using the comma operator in the initialization or update clause of a for statement, avoid
the complexity of using more than three variables. If needed, use separate statements before the

for loop (for the initialization clause) or at the end of the loop (for the update clause).

while Statements

Software Engineering Lab Manual Page 54

A while statement should have the following form:
while (condition) {
Statements,

}

An empty while statement should have the following form:
while (condition);

do-while Statements
A do-while statement should have the following form:

do {
statements;
} while (condition);

switch Statements
A switch statement should have the following form:

switch (condition) {

case ABC:
Statements,

/* falls through */

case DEF:
statements;
break;

case XYZ:
statements;
break;

default:
statements;
break;

}

Every time a case falls through (doesn't include a break statement), add a comment where the
break statement would normally be. This is shown in the preceding code example with the /*

falls through */ comment.

Every switch statement should include a default case. The break in the default case is redundant,
but it prevents a fall-through error if later another case is added.

try-catch Statements

A try-catch statement should have the following format:

Software Engineering Lab Manual

try {
Statements,

} catch (ExceptionClass e) {
Statements;

}

A try-catch statement may also be followed by finally, which executes regardless of whether or
not the try block has completed successfully.

try {
statements;
} catch (ExceptionClass e) {

statements;
} finally {
statements;

}

Blank Lines

Blank lines improve readability by setting off sections of code that are logically related.
Two blank lines should always be used in the following circumstances:

Between sections of a source file

Between class and interface definitions

One blank line should always be used in the following circumstances:

Between methods

Between the local variables in a method and its first statement

Before a block or single-line comment
Between logical sections inside a method to improve readability

Blank Spaces

Blank spaces should be used in the following circumstances:

A keyword followed by a parenthesis should be separated by a space. Example:
while (true) {

}

Note that a blank space should not be used between a method name and its opening parenthesis.
This helps to distinguish keywords from method calls.

A blank space should appear after commas in argument lists.

Software Engineering Lab Manual Page 56

All binary operators except . should be separated from their operands by spaces. Blank spaces
should never separate unary operators such as unary minus, increment ("++"), and decrement ("--
") from their operands.

Example:

at=c+d;
a=(atb)/(c*d)

while (d++=s++) {
n++;
H
printSize("size is " + foo + "\n");
The expressions in a for statement should be separated by blank spaces. Example:
for (exprl; expr2; expr3)

Casts should be followed by a blank space. Examples:
myMethod((byte) aNum, (Object) x);

myMethod((int) (cp + 5), ((int) (i + 3))
+1);

Naming Conventions Summary

Identifier Type Rules for Naming Examples

Packages The prefix of a wunique | com.sun.eng

package name 1is always | com.apple.quicktime.v2
written in all-lowercase | edu.cmu.cs.bovik.cheese
ASCII letters and should be
one of the top-level domain
names, currently com, edu,
gov, mil, net, org, or one of
the English two-letter codes
identifying countries as
specified in ISO Standard
3166, 1981.

Subsequent components of
the package name vary
according to an
organization's own internal
naming conventions. Such
conventions might specify
that certain directory name
components be division,
department, project,

Software Engineering Lab Manual Page 57

machine, or login names.

Classes

Class names should be
nouns, in mixed case with
the first letter of each
internal word capitalized.
Try to keep your class
names simple and
descriptive. Use whole
words-avoid acronyms and
abbreviations (unless the
abbreviation is much more
widely used than the long
form, such as URL or
HTML).

class Raster;
class ImageSprite;

Interfaces

Interface names should be
capitalized like class names.

interface RasterDelegate;
interface Storing;

Methods

Methods should be verbs, in
mixed case with the first
letter lowercase, with the
first letter of each internal
word capitalized.

run();
runFast();
getBackground();

Variables

Except for wvariables, all
instance, class, and class
constants are in mixed case
with a lowercase first letter.
Internal words start with
capital letters. Variable
names should not start with
underscore _ or dollar sign
$ characters, even though
Sboth are allowed.

Variable names should be
short yet meaningful. The
choice of a variable name
should be mnemonic- that
is, designed to indicate to
the casual observer the
intent of its use. One-
character variable names
should be avoided except

int 1
char c;
float myWidth;

Software Engineering Lab Manual

Page 58

for temporary "throwaway"
variables. Common names
for temporary variables are
1, J, k, m, and n for integers;
¢, d, and e for characters.

Constants

The names of variables
declared class constants and
of ANSI constants should
be all uppercase with words
separated by underscores
(" "). (ANSI constants
should be avoided, for ease
of debugging.)

Software Engineering Lab Manual

static final nt
MIN_ WIDTH = 4;
static final nt
MAX WIDTH = 999;
static final nt
GET _THE CPU=1;

Page 59

Experiment No.9

AIM- Use of testing tool such as JUnit

Objective:-

To show how unit testing is carried out in java using Junit.

Software Required:-
Eclipse IDE and Junit

OVERALL DESCRIPTION :
JUnit is an open source Java testing framework used to write and run repeatable tests which is
wildly used now days.

Unit Test

Many different types of tests are implemented and executed. In this report we only talk about
JUnit with Unit Test Unit test is a method of testing that verifies the individual units of source
code are working properly. A unit is the smallest testable part of an application. In object-
oriented programming, the smallest unit is a method, which may belong to a base/super class,
abstract class or derived/child class. A unit test examines the behavior of a distinct task that is
not directly dependent on the completion of any other task.

What is JUnit

JUnit is a simple, open source framework to write and run repeatable tests for Java Programming
Language. It is an instance of the xUnit architecture for unit testing frameworks. JUnit features
include:

e Assertions for testing expected results

e Test fixtures for sharing common test data

e Test suites for easily organizing and running tests

e (Graphical and textual test runners

Method Design

Here creation of unit test will be described. There are few rules how to write the JUnit method.
First of all we have to create the test class in which all test method will be. It’s good to name the
test case class after the class under test.

Criteria for test methods

For JUnit to recognize a method as test method , it must meet the following criteria:
The method must be declared public.

The method must return nothing (void).

The name of the method must start with the word test.

The method can’t take any arguments.

Software Engineering Lab Manual Page 60

Assertion methods
An assertion is a function or macro that verifies the behavior of the unit under test. Failure of an
assertion typically throws an exception, aborting the execution of the current test.

The TestCase class extends a utility class name Assert in the JUnit framework. The Assert class
are included methods which are used to make assertions about the state of testing object. Some
assert methods are as follows.

assertEquals([String message], Object expected, Object actual)
This method checks that two values are equal. If they are not, the method throws an
AssertionFailedError with the given message (if any).

assertFalse([String message], boolean condition)
This method checks that a condition is false. If it isn’t, the method throws an
AssertionFailedError with the given message (if any).

assertNotNull([String message], Object object)
This method checks that the object is not null. If it is, the method throws an
AssertionFailedError with the given message (if any).

assertNotSame([String message|, Object expected, Object actual)
This method checks that two objects not refer to the same object using == operator. If they do,
the method throws an AssertionFailedError with the given message (if any).

assertNull([String message], Object object)
This method checks that the object is null. If it isn’t, the method throws an
AssertionFailedError with the given message (if any).

assertSame([String message], Object expected, Object actual)
This method checks that two objects refer to the same object using == operator. If they do not,
the method throws an AssertionFailedError with the given message (if any).

assertTrue(|String message], boolean condition)
This method checks that a condition is true. If it 1isn’t, the method throws an
AssertionFailedError with the given message (if any).

fail(String message)
This method fails a test with the given message.

Software Engineering Lab Manual Page 61

Configure Junit in Eclipse

Step 1: In the Package Explorer view, select your project and right click go to properties, the last
item in the Menu. Your Project Name will be different.

£ deva . Werliyunitbercl AN Test . java - Eclise Platte
He §ir Sigre Rofadpr Neeagain Segrch Pt Bun Encoe Beip

o B-0-QG- BRPE- ™o oy = &
[E padage Dok £ T searce] = T (T uTost e 17 =00 B ke 7 =0
: 3. @7 wiy Sl
- .__m 1 poklic class JUNitTest | = p—
1 public JO=zeTass () (: -.'.;-‘-';'ﬂ‘j
e ! inso-gemecsred conmtructor e

pEblic static vaid mainjSceingl] erga)
a] EnscgeTersteds pes mas SCuk 22 Dutiom 17
W e
= @, amries
v'_ Prariewl)
& wonCErgT
Lo Protbare W a0 Dedarsin | = Hetory U SlReckoey 1T L = =

= e By D

Step 2: Select the Java Build Path and the Libraries tab. The window should look like this.

&= Praperties for Verifylunit

| e | Jansa Bulld Path
Rasourcs | — _
Eruikders j- O oot W EroiEol] M Ehroes | B ki e e |
Java euld Path Wils and doss Folders on bhe build poth:
:z j:: Emglsf:'b [B JRE SystemLibrary [jrel.S.0_10] [acd 18Rs.]
& Java Edibor | add Egrarnal mRs.., |
Jawadoc Location 5
Froject Referances | sdd ariable... |
FunfDiebug S=ttings | |
Task Pepootory Add Liaray. ..
Task Tags
e | #dd gassFoiger.. |
7 | o | [conoal

Software Engineering Lab Manual Page 62

Step 3: Select Add Library and select Junit

LT TS
Tt B lbrary bope b ackl E,.]

IEF Syclein L't-..r'i |

Lssw Leorary

7 oo T

Step 4: Select JUnit 4, then Finish.

it Library
Sele=ck e dlnik version to use in this projeck. 3 1

ik Sbrary versice: =l

Current locaton: i lechpsal eclpssl pluansyarg. jonicd 4, S, 15 unic. 18F

e [=Bmk || e [mrish][cancet |

Software Engineering Lab Manual Page 63

Step S5: Your Window should look like this.

= Properiies for Verifyunit

[Epp= Fiker et | Java Build path
- REsCUrDs | : —_—
- Builders | % scurce | = Projects | B Librades | 5 Order and Export |
i-- Java Euid Path 1A s end cless Felders on the buld peth:
- Java Code Style BB IRE System Ubrary [red. 5.0_10]
- Java Cormpiler =
-Java Edior B mh
= Add Exzmarnal MRS,
t-- Javadoo Locztian
‘- Project References add variable...
- punfDebug Sattings
- Task Repositary
e
owalidation fidd Oass Folder...
Migrate J4R Fie. ..
7] = | [concel

Software Engineering Lab Manual

Page 64

Experiment No.10

AIM- Project management using GanttProject

Objective: To show how Project management is carried out in GanttProject.

Software Required:-
GanttProject

OVERALL DESCRIPTION :
GanttProject is an open source framework used to perform planning, scheduling and resource
allocation activities.

TASK CREATION

First, you create some tasks by using the New Task button or directly from the Tasks menu
choose New Task. The tasks appear on the tree on the left pane; you can directly change their
name here. Next, you can organize tasks by indenting them forming groups or categories. So you
could have a hierarchy like this:

Br—Task 1 3 F
S Tak 11 ||| O ™
F Tazk 1.2 o R
Ak Task 13 |: |]

Bor—Task 2 o " |6
@ Task 21 || N
&k Tazk 2.2 [| 1

ik Task 3 8 |] 1=

Tasks can also be re-organized by using the up and down functions. These functions move the
selected task up or down in its hierarchy reordering it.

RELATIONSHIPS

Ganttproject allows you to specify a relationship between two tasks. You can set them by
dragging directly on the chart. Click and hold on the first task and moving the cursor to the
second task. An arrow will appear, following the mouse. Drag the arrowhead to the second task

and release the mouse. The second task will be dependent on the first one. You will have a chart
like this:

Software Engineering Lab Manual Page 65

"> " s
' } i
[]
J 1
EDITING PROPERTIES

For each task you can edit the properties in a dialog box, by using the Properties menu, or by
double-clicking on either the task’s name, or it’s Gantt bar. The properties box allows you to edit
the name of the task, the duration, the percent complete, the start and end dates, the color on the
chart, the priority, and the explanatory notes. You can also define the relationship between tasks
by choosing different predecessors. You do this by selecting the second panel of the box and
choosing the name of the predecessor task, and the type of relationship.

fenira Fradeesases | Rainunes | B

Mame Benchrrark prodocs Dwraisss: |4
Prigeess | 0v— Prbesiy | emal v

Dt

Benin sl a0 14, 2003 7] Enedats a0 1B, 2003 o |

| Measioss | Colar || Dafaalt |

viak | ¥ Camecal

CREATING RESOURCES

A project is composed of tasks and people (or resources) who are assigned to each task.
You can create resources on the Resources panel by specifying the name, the function
and contact information (mail or phone by example).

ASSIGN TO TASKS

A resource can be assigned to a task directly on the properties dialog box of the task.
Select the third tabbed panel and choose the name of the resource you want to assign.
Then, specify a unit for the resources

RESOURCES CHART

A special chart is available for all resources on the panel. It shows the resource time
allocation and is similar to the Gantt Chart. An example is giving here :

Software Engineering Lab Manual Page 66

Exancire T, Droject .. alexanomasd _
Matmas Bar davelonar fatiias nar J =————|
ik Lis dervel pper e Léhanon | o ——
DivlryBara_developer femiry barash _ |€ ———
Malk Schulz develooer post@muksch., | =

Here are some snapshorts of GanttProject:

CED Task Resouives AanesiEe Appraaaie

e e

Eguag ﬂuﬂE]-ucy: L 25 QQ
| o e

8 Tl _J
B — figims Sps nficmsa e Ea 1 :ng'—| 4 F

ol KRR C LR T
& Frarura’ LD nnormen
A FE e R R el
& ep T pradaty
43 pakas s mm
I Tag= Por Fesacen
Lt % CFITRT T 1T
&l Ecn N
EL T e e T
ot Bl raneep
K SEH 1 T O
F Wi Papre anss:
L T (T T e
G Dizsdyyres st
A3 Bim st gk

Software Engineering Lab Manual Page 67

E ArnatE ot Bl sensagled sl =R
Feajen. Bil Task Ersomioes Lengmage Apptseoe Heip

DB Sd o@ghi~ccCt «$Q&
e oo

way 1ME

F E |:|_ﬂ-:-_'l|lr O S T e e A AR R T ER T
)

L LI LRSS PR Y ; A, = i
ﬂll“ﬂ
: 100d

£} KT (LSS
& neeraew LD muriamens
A} KA S s

LL Fap o 2k rk 3
= [] —
u

s =
]

g 7] End daes 18, 290F | & p—

£} BuB 1551 Gl ain =

et G e
| Eom = Cancal |

Software Engineering Lab Manual

Experiment No.11

AIM- Version control using Subversion

Objective: To familiar with configuration management using TortoiseSVN
Software Required: TortoiseSVN

Description:

In software engineering, configuration management deals with the control and management of
the actual software product. The key aspects include using version (or revision) control for
source code and other important software artifacts, recording and tracking issues with the
software, and ensuring backups are made. This tutorial will focus on the first of these: software
version control. While some software engineering practices are critical only for large software
development efforts, every software project, regardless of how large or small, should use a
version control system for the source code.

Version Control

Version control tracks changes to source code or any other files. A good version control system
can tell you what was changed, who changed it, and when it was changed. It allows a software
developer to undo any changes to the code, going back to any prior version, release, or date. This
can be particularly helpful when a researcher is trying to reproduce results from an earlier paper
or report and merely requires documentation of the version number. Version control also
provides a mechanism for incorporating changes from multiple developers, an essential feature
for large software projects or any projects with geographically remote developers. Some key
concepts pertaining to version control are discussed below. Note that the generic descriptor “file”
is used and could represent not only source code, but also user’s manuals, software tests, design
documents, web pages, or any other item produced during software development.

repository — single location where the current and all prior versions of the files are stored
working copy — the local copy of a file from the repository which can be modified and
then checked in or “committed” to the repository

check-out — the process of creating a working copy from the repository (either the
current version or an earlier version)

check-in — a check-in or commit occurs when changes made to a working copy are
merged into the repository

diff — a summary of the differences between a working copy and a file in the repository,
often taking the form of the two files side-by-side with differences highlighted

conflict — a conflict occurs when two or more developers attempt to make changes to the
same file and the system is unable to reconcile the changes (note: conflicts generally
must be resolved by either choosing one version over the other or by integrating the
changes from both into the repository by hand)

update — merges recent changes to the repository into a working copy

Software Engineering Lab Manual Page 69

The basic steps that one would use to get started with a version control tool are as follows:
1. Create a repository
2. Import a directory structure and/or files into the repository
3. Check-out the repository version as a working copy
4. Edit/modify the files in the working copy and examine the differences
between the working copy and the repository (i.e., diff)
5. Check-in (or commit) the changes to the repository

1. Creating a Repository

Determine a location for the repository, ideally on a server which is automatically backed up.
Create a folder with the name of the repository; in this example the repository is called “VVCS-
Example.” Right click on the folder name, choose “TortoiseSVN” (which is integrated into the
Microsoft Windows Explorer menu), then “Create Repository Here.” Choose the Native
Filesystem, then you should see the message “Repository Successfully Created.”

B

; - = Corrpemn. & WYY Peplod B0F & TP-Sapomsory ¢ - |y .
famr Tl wenied [P o
Rk e LA saided R P
g
Erpiem
Sk
s & Pk 1 Craili em

Thaw

A
P -, o e

L O owrs P Syrwreoe meoen L=

EqpEy P Ly
| Cotwr e iwn_ |
8y Camibire g i il n fonat -
Aeuk o Yiecam 3 bndy
Sl T of BE Jaian
oo

Cm

il e Sl an
[

TR
g

2. Importing a File into the Repository

Right click on the directory containing the file(s) and/or directory structure you wish to import to
the repository (note, the directory that you click on will not be imported). Here we will simply be
importing the file “codel.f” from directory “Codel.” This code creates a 17x17 two-dimensional
Cartesian grid for x and y between 0 and 1. Browse until you find the location of the repository
“VVCS-Example” and select that directory name. This version of the code will be Revision 1.

Software Engineering Lab Manual Page 70

! - : |
nnﬂll.q- wreprm ¢ S Fadepd 5 ¢ T L 8 w| iy N r

i e Ll

b lmarred mw Ty LT Tag
o Lewi LoD WS e bl Bl
i
Tame—
e
L s ek, o e
Fm
SR LF
T — . e
o Doy Bkt 8 Bt bt |

1 L ey
¥ Cortea nammtet Pl e ll:‘.-._‘

E SR LRI T g
. W, =

Lt .
[T

L]

Cinitta Edmbvad

(el
Lo
Fromia

3. Checking the Code out from the Repository

You now have the code “codel.f” safely placed in the repository. To modify this code and create
a new revision, you will need to check out a working copy of the code. Go to the directory where
you will be modifying the code, in this example, the directory “Modifications.” Right click in
Windows Explorer, and select “SVN Checkout...” Select the name of the repository you just
created, then click “OK.” You will now get a window telling you that you are at Revision 1.
Notice the green check mark on the “codel.f” icon. This indicates that this working copy is up to
date with the version in the repository.

T
e L
u-_ I =R e [] L

LI S e e Trer -
B e T

A

ot I

Do Iy

ek By "
L= L]

Carismvia ThaFoiw.

e Bramie thhi
W Tornee et L
i e PR Sy Bl L]

Pemprriey

Software Engineering Lab Manual Page 71

4. Modify the Code and Compare to the Repository Version

The code “codel.f” can now be modified. Here we will change the code to allow the Cartesian
grid to contain 33x17 points between the values of zero and ten. Once the code has been
modified, you will notice that the green check mark has been replaced by a red exclamation
point, indicating that the current working copy has been modified from the version in the
repository. To examine these differences, right click on the “codel.f” file, select “TortoiseSVN,”
then “Diff.” This opens the “TortoiseMerge” tool which clearly shows the modifications to the
repository version (Working Base) that were made in the Working Copy.

BRREE -
ﬁ_. ol B ke G030 b Doy @ Coe] @ Plwchrbnstiory wlbp s 00000 »
Figrm Lpby re e Hpa e
] el TR WH N vl Fpdner i -]
dlprr
Frinl |
vl -
Cpmn Wil o Sl g
R i Th, Mapa ey
s T ek i e n b ey
. B s
(R T Ie LTTE ¥ Uplticis sowe
L T A
W Teem
Ll 1 b B
- L A e
nde.v P s
Laprihmini R Swduh
[\ T Mg
Fduvrm i B
ﬁ"."_ _'_'_'_ . B Cedrpnn
L
1. Fny
W Soiten
a A i
& Tertcusfiergs = Ee e |
Rl R Ve Kege Help
Al EE SRR im= s @ 7
onidel_# ¢ Working Base - codel £ : Workimg Cepy | .
= i
& ORI Baln i PEOHE S BA LT
:.g .. . !
- TP, . e L Y o= i prapeiar [ir=31, i9=21)
8 £
_l dirsrriogn & (13370, yi3e, 7] E dimanzign ¥ jix, Iwi. vitx, 17
] T
BC —ee——=Sipple "Exrunple Progosns for -WNACS B L —e———=Zinpla Epargls Program for - WUCI-
‘A 9
in 0
=]l L i T 110 ———-——CrEmtE 3017 CRACLES1AD GCLO-—----
e LA . L0 ——— 0 o A0y P 0 -
13 13
e B s L&y
15 j =17 1% 3] =17
15 - o i=1,11 16 hoo1md il
- i Ao iyel,33 AT do 3=1,33
B s e E EESL S LREE B ST St LR 10 CEil 3] = 1ATElont [1-1) A Lost (1i-
e gt e dloscciediidlaac el o dE Rl 3l = -i0*Eloac |1-1) £ loeT (33
za - andds= o arncddn
ik Efidio at i
2E q13-
TE a3
29 and 2% [57}
a6 15
- " L] ¥ mn L]
scdi m 1!___ e -
+ Halp praws F1, el horuoriaby vrih Cid-Sorolwchmal LaftrNornz - 8 Right Vi + £ Comtlete 0

Software Engineering Lab Manual Page 72

5. Check the Code back into the Repository

When the changes are complete, the repository can be updated with your modified Working
Copy by performing a checkin. Just right click on the file (or directory) and select “SVN
Commit...” Enter a message describing the changes that were made, then select “OK.” You are
now at Revision 2.

=
R =
ul. | Lk T Fread K 0 TPR-Cadm @ Cepdel 8 Modbossomn | iy || Ie Il
L Gl Enui el = e
il ekl 1A B 01 B kit P Fi 18
Al
Biga
Totw b Ve
oy W
& 3 piets
o [

Frirlial il TaRET
Eerihard s r, o T,

Tad T

Car
[of %

© mgp Yrecm
Uk
Pt

Frapmim

Software Engineering Lab Manual Page 73

